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Abstract

The entropy generation in a plane turbulent jet is revisited. This flow is characterized by quasi-periodic lateral

oscillations, documented in the literature, due to the instability of the flow. Based on the laws of Thermodynamics, an

analysis of the entropy generation has been presented by Bejan [Entropy Generation Minimization. The Method of

Thermodynamic Optimization of Finite-Size Systems and Finite-Time Processes, Wiley, New York, 1996, p. 61]. In this

paper, a term has been added that takes into account the experimentally observed oscillations. The results are compared

for the cases with oscillations and without oscillations. � 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Turbulent flows are characterized by fluctuations

that are generally considered as random and are there-

fore described by means of their statistical properties.

This random nature of turbulent flows is apparent for

the small scales of the flow, but it may be not for the

large scales, as it has been suggested in the literature

during the last two or three decades. This fact is espe-

cially remarkable in the case of free turbulent shear

flows – jets, wakes and mixing layers – where it has been

detected a coherent, and to a certain extent, determin-

istic behavior [1,2]. In many cases, oscillations with

clearly distinctive frequencies have been detected and

measured [3,4].

No matter what the origin of the oscillations could

be, the evolution of the flow is always accompanied by

thermodynamic entropy generation. This generation

intuitively increases with the entrainment at the flow

boundaries, as a result of the mixing and lateral exten-

sion of the flow with the surrounding, quiescent fluid.

Bejan [5] has recently developed the theoretical basis to

quantify the entropy generation in a variety of physical

situations of interest in engineering, as it is the case of a

plane turbulent jet.

In this paper, a modified version of the model de-

veloped by Bejan for a plane turbulent jet is presented. It

is included now the energy associated to the observed

lateral oscillations of the flow.

2. Lateral oscillations of plane turbulent jets

There are many instances in Fluid Mechanics, where

repetitive phenomena, almost periodic, are present with

clearly distinctive frequencies [6]. This is the case of the

lateral oscillations in a plane turbulent jet, whose char-

acteristic frequencies, when scaled with the appropriate

local variables, compose a unique dimensionless pa-

rameter.

The origin of these oscillations is the instability of the

flow, either at the first stages of the viscous regime, or

rather, once the turbulent regime has been established,

when the flow penetrates and drags the surrounding

fluid, experiencing a kind of buckling or lateral oscilla-

tion.

In the first case – the laminar flow, where the oscil-

lations are easily detectable and quantifiable by means

of various experimental techniques – the conventional

analysis of the problem is the one derived from the

theory of the linear stability of the flow. The existence of

a defined disturbance is postulated, superimposed to a

known laminar flow, and the behavior of the distur-

bance, in time and space, is analyzed. If it grows the flow
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is unstable; if the disturbance decays, then the flow is

considered stable.

On the other hand, the observation and experimental

characterization of the oscillations in turbulent shear

flows require the use of specialized instrumentation and

visualization techniques [1,7], in addition to the pro-

cessing of random signals [3]. The results of numerous

investigations during the last 30 years seem to confirm

that the large scales of turbulent shear flows are to a

certain extent, deterministic [2,9].

In this way, it has been detected an almost periodic

behavior of turbulent shear flows as coherent structures

and vortex pairing in mixing layers and two-dimensional

wakes, and as flapping and oscillations in plane and

circular jets. In all the cases a frequency of oscillation

associated to a characteristic wavelength can be quan-

tified, that scales with the flow width and the average

local velocity of the fluid, giving rise to a representative

constant Strouhal number for the whole flow [4,8].

A complete theory about the presence of these peri-

odic structures is still lacking, but it is true that they

could be considered as if they were harmonic oscillators

with defined energy characteristics [4]. Thus, their os-

cillation energy can be written as [10]

e ¼ 1

2
2pDfð Þ2; ð1Þ

where D represents the cross-section scale of the flow

(width of the jet or the wake) and f is the local frequency

of the lateral oscillations.

3. Entropy generation in a plane turbulent jet

The evolution of any shear flow always goes ac-

companied by entropy generation, which intuitively in-

creases as a function of entrainment at the flow

boundaries, as well as of mixing and lateral extension of

the flow with the surrounding, still fluid. Bejan [5] has

recently developed the theoretical basis to quantify the

entropy generation in a variety of physical situations of

interest like a turbulent plane jet. Based on the laws of

Thermodynamics for a control volume of thickness dx,

through which a turbulent plane jet flows, Fig. 1, it is

Nomenclature

e oscillations energy

D diameter

f local frequency of oscillations

v longitudinal flow velocity

u transversal flow velocity

uc centerline flow velocity

Tc centerline flow temperature

f ðfÞ similarity shape profiles

�xx dimensionless coordinate

�uuc dimensionless velocity
�DD dimensionless diameter

D�TTc dimensionless temperature difference

h enthalpy

Sgen entropy generation rate
�SSgen dimensionless entropy generation rate
�SSgen;max maximum dimensionless entropy generation

rate

St Strouhal number

Greek symbol

a empirical constant for entrainment

Fig. 1. Schematic view of a plane turbulent jet.
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possible to establish a relationship between the similarity

characteristics of the flow and the entropy generation

that accompanies the shearing process.

As it is well-known [11], turbulent shear flows are

characterized by similarity laws in their velocity, tem-

perature and other local properties profiles. A shape

function, f ðfÞ, can thus be proposed for the profile of

the local average velocities

u ¼ ucf fð Þ; ð2Þ

where f ¼ y=D is the cross-section coordinate and ucðxÞ
is the velocity at the center of the jet. By simplicity, it is

possible to assume that the profile of average tempera-

tures has the same form that one of the velocities

T � T1 ¼ Tcð � T1Þf fð Þ; ð3Þ

where TcðxÞ is the temperature at the centerline of the jet.

In the summarized analysis that follows, some dimen-

sionless variables are used:

�xx ¼ x
D0

; �uuc ¼
uc

u0

; �DD ¼ D
D0

; St ¼ fD
uc

; ð4Þ

where St is the Strouhal number that characterizes the

lateral oscillations of the jet. Based on the work by

Morton et al. [12], Bejan [5] integrated the boundary

layer type equations of continuity and momentum in the

x-direction, for a turbulent plane jet, under the similarity

consideration given by Eq. (2), obtaining

�uuc ¼
I1

4aI2

� �1=2

�xx�1=2; ð5Þ

�DD ¼ 4a
I1
�xx; ð6Þ

where the entrainment hypothesis in a shear flow has

been used. The entrainment process, that is, the advance

of the turbulence interface into the outer fluid, influ-

enced by lateral mean convection [13], essentially means

that the transverse velocity component can be expressed

as �v1 � auc, being a an empirical constant for any self-

preserving flow, but different from one kind to another.

For a plane jet, it has a value of around 0.04 [11], and

Bejan [pp. 63 et seq.] concluded that a proper empirical

value to be used in his integral analysis is 0.0367, based

on mixing-length modeling of the jet. In fact, through a

pure first law of Thermodynamics analysis, he obtained

an optimal value of a in the same order of magnitude as

the empirical entrainment coefficient generally reported

in the open literature.

In Eqs. (5) and (6), and in the expressions that appear

ahead in this paper, certain coefficients arise which

represent integrals of the similarity profile shape as-

sumed for the velocities and temperatures

I1 ¼
Z 1

�1
f df; I2 ¼

Z 1

�1
f 2 df; I3 ¼

Z 1

�1
f 3 df: ð7Þ

Thus, according to the first law of Thermodynamics,

it is possible to write

d

dx

Z 1

�1
h

�
þ u2

2

�
qudy � h1

"
þ � v0ð Þ2

2

#
d

dx

�
Z 1

�1
qudy þ 1

2

d

dx

Z 1

�1
2pDf½ 
2qudy

¼ 0: ð8Þ

The first term expresses the net increase in the flow

direction, in the control volume, of energy (represented

by the local averages of enthalpy and kinetic energy).

The second term considers the energy contribution to

the jet by the process of lateral extension into the am-

bient fluid. These two terms were originally derived by

Bejan [5]. The third term – proposed and deducted in

this investigation – represents the energy associated to

the oscillations observed in the flow, in agreement with

Eq. (1).

Eq. (8) is integrated with respect to x, assuming that

the flow is isothermal as it comes out from the nozzle. In

this way, an expression for the dimensionless tempera-

ture difference in the central line of the jet is obtained,

D�TTc ¼
I3 þ a2I2 þ 2pStð Þ2I1

I2
2

1

4a�xx

� �1=2
"

� 1

4a�xx

#
; ð9Þ

where D�TTc is defined as

D�TTc ¼
cp

u2
0=2

Tcð � T1Þ: ð10Þ

On the other hand, from the second law of Ther-

modynamics for the volume of control defined in Fig. 1,

the entropy generation along the jet can be written as

dSgen

dx
¼ d

dx

Z 1

�1
qusdy � s1

d

dx

Z 1

�1
qudy P 0 ð11Þ

and can be reduced to

dSgen

dx
¼ d

dx

Z 1

�1

cp

T1
Tð � T1Þqudy: ð12Þ

Considering again the similarity profiles for the ve-

locity and temperature, Eqs. (2) and (3), respectively,

and the integral given by Eq. (7), the generation of en-

tropy can be expressed as

d�SSgen

d�xx
¼ d

d�xx
ðI2�uuc

�DDD�TTcÞ; ð13Þ

where

�SSgen ¼ Sgen

qu3
0D0=2T1

: ð14Þ

Integrating Eq. (13) from the nozzle outlet (where

D�TTc ¼ 0), it is obtained

�SSgen ¼ I2�uuc
�DDD�TTc: ð15Þ
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Finally, replacing D�TTc from the first law analysis, Eq.

(9), it is obtained

�SSgen ¼ I3 þ a2I2 þ 2pStð Þ2I1
I3=2
2

1

"
� I1

4a�xx

� �1=2
#
: ð16Þ

4. Results

Eq. (16) expresses the entropy generation rate, �SSgen,

for a plane turbulent jet as a function of the longitudinal

coordinate �xx. It includes as parameters, the entrainment

constant of the flow with the surrounding fluid at rest, a,

the integrals previously defined with the velocity and

temperature similarity profiles, Eq. (7), and most im-

portant, the energy associated to the observed lateral

oscillations of the flow, through the Strouhal number.

Without considering the latter effect, this equation re-

duces to the one presented by Bejan [5], for the non-

oscillating jet.

The equation shows that the entropy generation rate

grows as �xx increases. In order to calculate this tendency

it is necessary to use appropriate similarity profiles for

the velocity and the temperature in Eqs. (2), (3) and (7).

Table 1 summarizes the calculations performed in the

present work for two typical forms of the similarity

profiles of a plane jet reported in the literature: one

corresponding to a square hyperbolic tangent function

(used by Bejan in his analysis), and the other corre-

sponding to a square hyperbolic secant function. The

table also shows the Strouhal numbers that take into

account the experimentally observed frequencies in these

flows, according to Cervantes and Goldschmidt [3]. In-

cluded in this table are the calculated values of the in-

tegrals given by Eq. (7).

The longitudinal evolution of the entropy generation

in the jet is shown in Fig. 2. The results without oscil-

lations (lower curves of Fig. 2) agree well with the trends

reported by Bejan [5] (Fig. 3.13, p. 68, not shown in the

present paper, for clarity of figure), for various simple

models of the velocity profile: triangular, parabolic, top

hat and Gaussian profile shapes.

On the other hand, the results for the oscillating jet

(upper curves in Fig. 2) correspond to the physically

expected behavior. As can be established from the

Constructal Theory formulated by Bejan [14], turbulence

represents the natural tendency of a flow field to seek

and find a flow structure that enhances the mixing rate.

The participation of the oscillations in the flow gives as a

result that part of the flow energy must contribute to the

entrainment and mixing process of turbulence. This

means that higher values for the entropy generation are

to be obtained in each jet cross-section due to the lateral

oscillations, as compared to the calculated entropy

generation for the case without oscillations. Moreover,

in both cases there is a sudden increase in the entropy

generation, in the flow region where �xx is about 20, that

is, where the jet is more unsteady and has the more

distorted profiles, right before it reaches the self-

preserving region. This response is enhanced by the flow

oscillations.

In the similarity region of the jet ð�xx > 20Þ, a smooth

increase of the entropy generation with respect to the

longitudinal coordinate must be observed, as in Fig. 2.

Self-preservation asserts that a moving equilibrium is

set-up in which the conditions at the initiation of the

flow are largely irrelevant, and the flow depends on few

simple parameters and is geometrically similar at all

sections, Townsend [11]. According to this renowned

Table 1

Effects of the Strouhal number in the entropy generation of a turbulent plane jet

Similarity profile Strouhal numbera I1 I2 I3 �SSgen;max Eq. (17)

Without

oscillations

With

oscillations

f ðfÞ ¼ 1 tanh2ðfÞb 0.154a 2b 4/3b 16/15b 0.694b 1.91c

f ðfÞ ¼ sech2ðfð2=pÞ1=2Þd 0.154a 2pc 1.67c 1.33c 0.62c 1.706c

a Cervantes and Goldschmidt [3].
b Bejan [5].
c Present work.
d Townsend [11].

Fig. 2. Entropy generation for a plane jet: (- - -) with oscilla-

tions, (—) without oscillations; (M) profile of Bejan [5], (�)

profile of Townsend [11].
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author in the turbulent shear flows theory, self-preser-

vation may exist only as an asymptotic condition. This

seems to be the case with respect to entropy generation

as seen in Fig. 3, where a similarity behavior can be

observed after normalizing the ordinates of Fig. 2, with

the maximum value of the entropy generation (last col-

umn of Table 1) obtained for large values of �xx in Eq.

(16), that is,

�SSgen;max ¼
I3 þ a2I2 þ 2pStð Þ2I1

I3=2
2

: ð17Þ

5. Concluding remarks

The production of entropy in a plane turbulent jet,

taking into account its natural oscillations, has been

presented. The analysis consisted of a modified version

of the model developed by Bejan [5] for a plane jet, in-

cluding this time, the energy associated to the experi-

mentally observed lateral oscillations of the flow. The

calculated results are congruent and confirm what in-

tuitively can be expected: entropy generation grows

along the flow direction and depends directly on the

entrainment with the still ambient fluid. This response is

enhanced with the natural oscillations of the jet. A

strong increment in entropy generation could be de-

tected in the highly unsteady region of the flow (that is,

where �xx � 0:2). On the other hand, the smooth increase

of the production of entropy in the downstream direc-

tion, towards an asymptotic maximum value, confirms

the similarity properties of the flow in the far field re-

gion. This self-preserving behavior of the oscillating

turbulent plane jet is difficult to characterize with respect

to the entropy generation and needs further work.

Nevertheless, it has not been previously reported in the

literature.
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